The LumaFix64 removes vertical lines from your Commodore 64. Read the review and see the pictures on breadbox64.com

The LumaFix64 Mod

Some people just can’t be satisfied with how things were back in the good old days when Mario was called Jumpman and real computers ran on 8 bit. These high achievers keep tampering with the old hardware to make it perform even better compared to their original form. It was this kind of can-do spirit that instigated some guys on a German Commodore 64 forum to come up with a solution for reducing the inherent ‘clock noise’ of the VIC-II graphics chip and the color bleeding of the S-video signal. The problems are easily recognized in the form of vertical lines (banding artifacts) or as a checkered pattern spanning across most of the screen, depending on the monitor signal being used (Composite or S-video). The issues are not as profound when using one of those good old CRT based televisions or monitors (which some breadbox aficionados think of as being esoteric…). However, when using a modern TV, the effects may even worsen as the video outputs of the graphics chip are not optimized for modern day equipment. The following two pictures show examples of the two types of artifacts.

The LumaFix64 for the Commodore 64. Vertical banding artifact on a plasma tv. Read the review on breadbox64.com

The LumaFix64 for the Commodore 64.Checkered pattern on a plasma TV. Read the review on breadbox64.com

The cause of the vertical lines artifact is basically unwanted interference generated from clock signals stemming from the VIC-II graphics chip. The noise-introducing-signals include the AEC line (related to bus access), CAS and RAS signals (related to memory access), BA signal (bus availability) and PHI0 (clock related). Practical tests have shown that the primary sources of the interference is intimately connected to the AEC and PHI0 lines and the PHI0 affects the borders more than the AEC does.

The checkerboard pattern artifact (or thin green and red colored lines) is mostly related to the Chroma signal of the S-video output. The problem is most visible when using the Commodore 64 with a modern TV. It can be reduced by adjusting the voltage level of the Chroma signal.

Reducing the vertical lines problem can be done by inverting the sources of the artifacts (the interfering signals) and blend them back into the picture by an adjustable amount. On a practical level, a device called LumaFix64 was created based on the combined forces of the C64 community and made available by different producers online either as a kit or as an assembled ready-to-use product. The version reviewed here was designed by e5frog and manufactured by Tim Harris of Shareware Plus. It is basically a little printed circuit board that is placed between the VIC-II graphics chip and the motherboard of the Commodore 64. It has a standard 40 pin female IC socket on top for placing the VIC-II chip in and a 40 pin male header pins on the bottom for fitting the device into the socket on the motherboard. It has small potentiometers for adjusting the AEC and PHI0 signal (vertical lines) and the Chroma signal (checkered pattern).

The LumaFix64 for the Commodore 64. Read the review on breadbox64.com

The LumaFix64 for the Commodore 64. Read the review on breadbox64.com

The LumaFix64 for the Commodore 64. Read the review on breadbox64.com

VIC-II Image Test Bench

For evaluating the LumaFix64 several hardware setups and tests were applied. I used a ‘test bench’ that consisted of PAL hardware only (Commodore 64 hardware and monitors) as commenting on NTSC’s ditto would be quite an effort when living in a PAL country. However, it is expected that NTSC owners will experience similar changes in image quality when using the LumaFix64 in their equipment.

For image evaluation, a B&O (Bang & Olufsen) BeoVision MX4000 21″ CRT television was used as this little design beauty has an exceptional sound quality (and vision) and accepts both composite and S-video image signals. To evaluate the image quality on more modern hardware, a 42″  Panasonic Plasma TV (TH-42PV60EH) was used. For signal transfer, S-video and Composite cables from Retro Computer Shack were used.

Two types of motherboards were used including an old type longboard (Version A-CR, Assy no. 250407 Rev. B) and a newer type short board (Version E, Assy no. 250469 Rev. B). Both PCB’s were pretty close to being new Old Stock as no repairs have been done to either board, except for a replacement of all electrolytic capacitors and voltage regulators.

The LumaFix64 for the Commodore 64. Read the review on breadbox64.com.

The LumaFix64 for the Commodore 64. The device installed.Read the review on breadbox64.com

A total of seven VIC-II graphics chips were included for testing the LumaFix64. The list of IC’s for the longboard is as follows: a MOS 6569R3 (2085), MOS 6569R3 (3784), two MOS 6569R3 (4884) and a MOS 6569R5 (3786).  The list of IC’s for the C64 short board is a s follows: a MOS 8565R2 (0389) and a MOS 8565R2 (3788).

The C64 LumaFix64 tested with a stack of VIC-II graphic's chips.

Image Quality Tests

All chips were tested individually on each TV set. The image quality of each chip was initially evaluated without the LumaFix64 installed (Composite and S-video) and then with the LumaFix64 installed (Composite and S-video). To keep track of everything, screen images were taken at each step for comparison yielding a total of 56 image (8 images of each of the 7 VIC-II chips).

During the CRT TV tests, it was pretty obvious that not that many vertical lines or checkered patterns were present when using any of the chips. First I thought, that something was wrong with my copy of the LumaFix64. The biggest differences actually came when adjusting the PHI0 potentiometer. Almost nothing happened with the Chroma and the AEC pots. Obviously, the S-video video signal yielded the most crispy images. If I looked very closely, the vertical stripes were there, but not much happened when adding the LumaFix64. In general terms, no obvious differences were found among the different chips regardless of revision and motherboard used.

However, repeating everything on the modern plasma TV, everything changed! The images were downright horrible and the LumaFix64 wasn’t broke after all! Without the LumaFix64, the Composite images contained profound ghosting artifacts, blurry edges, vertical lines and everything looked smeared while the S-video suffered from severe checkered patterns but the images were a little sharper. Using the Lumafix64, the Composite signal could be bettered but I never managed to remove the artifacts entirely. The S-video signal could also be cleaned up but at the cost of image sharpness. On the positive side, images produced by the MOS 6569R5 graphics chip left the rest of the test chips in the dust! This chip showed far less vertical stripes, less smearing and checkered patterns. In combination with the LumaFix64, I managed to achieve a pretty good image on the plasma TV. To be honest, if I should use a modern TV for any of my Commodore 64 needs, this would be the only chip I would consider using. The rest of the tested chips were simply not worth using!

Here are the before and after photos of three of the chips (6569R3, 6569R5 and 8565R2). The images are very forgiving and some of them look a lot worse in real life. The one that needed the LumaFix64 the most is the 6569R3 in my opinion (The differences in color of the Plasma/CRT images are caused by my camera and not the LumaFix64).

The LumaFix64 for the Commodore 64. Images with differnet VIC-II chips.Read the review on breadbox64.com

The LumaFix64 for the Commodore 64. Images with differnet VIC-II chips.Read the review on breadbox64.com

The LumaFix64 for the Commodore 64. Images with differnet VIC-II chips.Read the review on breadbox64.com

Fitting the LumaFix64 into the Commodore 64

The device adds to the overall height of the graphics chip. No problems arose when using the device inside a breadbox case. Fitting the LumaFix64 in the narrower Commodore 64C case is tight, but should be possible without any modifications. However, if the soldering iron is hot and the urge to mod is present, removing the VIC-II socket on the motherboard and soldering in an ultra low profile socket could be done to reduce the overall height. But it should not be necessary for the average user who just wants better images. The LumaFix64 for the Commodore 64C. There is room enough below the keyboard! Read the review on breadbox64.co.

Final Thoughts

Don’t expect the LumaFix64 to remove any of the image artifacts completely and give you an emulator-perfect image (who wants that anyways…). What it will do, is reduce the main reasons that causes the vertical stripes and checkered patterns. I always use the B&O television for my Commodore 64’s as it has a great image and the sound is fantastic. On this TV set, the LumaFix64 may improve things a tiny bit, but not to an extent that I would go through the hassle and install LumaFix64’s in any of my current machines. Somehow this TV manages to compensate for the differences in signal from the Commodore 64 regardless of VIC-II graphics chip being used. However, using a modern day TV the LumaFix64 is the only way to get an acceptable image quality. Without it, both types of video signals (S-video & Composite) are horrible. The plasma screen that was used is pretty forgiving when it comes to analog signals and it only has 720 lines available. Using TV’s with even higher resolutions, the images are expected to worsen. Thus, getting the best image quality on a modern TV, the combined use of a MOS 6569R5 graphics chip and the LumaFix64 should get the highest attainable image quality.

Even better image qualities can be achieved if a RF modulator mod is carried out. However, this kind of modification removes some of the soul from the Commodore 64 in my opinion. It may also cause other problems as the mod is not trivial and includes quite a bit of soldering, as well as knowledge and technical skills. Thus, for an easy image fix, the LumaFix64 is the smooth path to better images on your retro hardware.

Just a final thought: If you own more than just a few C64’s, always use a modern TV and consider installing LumaFix64’s in all of them, maybe getting a truly design beauty, like the B&O BeoVision MX4000, could be the way to go. I payed like 50 $ for mine and the design of that TV never goes out of style!

NOTE: This article has also been been published in Europe’s #1 C64 scene disk magazine – Attitude #17  by TRIAD (link).

© breadbox64.com 2016

Leave a Comment